• 2024
  • 2023
  • 2022
  • 2021
  • ~2020
  • ~2010


(3) B. Maity,* M. Shoji,* F. Luo, T. Nakane, S. Abe, S. Owada, J. Kang, K. Tono, R. Tanaka, T. T. Pham, M. Kojima, Y. Hishikawa, J. Tanaka, J. Tian, M. Nagama, T. Suzuki, H. Noya, Y. Nakasuji, A. Asanuma, X. Yao, S. Iwata, Y. Shigeta, E. Nango,* and T. Ueno*
Real-time observation of a metal complex-driven reaction intermediate using a porous protein crystal and serial femtosecond crystallography
Nat. Commun., 15, 5518 (2024). DOI:10.1038/s41467-024-49814-9
(2) M. Kojima, S. Abe, T. Furuta, K. Hirata, X. Yao, A. Kobayashi, R. Kobayashi, and T. Ueno*
High-throughput structure determination of an intrinsically disordered protein using cell-free protein crystallization
PNAS, 121, e2322452121 (2024). DOI:10.1073/pnas.2322452121
(1) B. Maity, S. Kameyama, J. Tian, T. T. Pham, S. Abe, E. Chatani, K. Murata, T. Ueno*
Fusion of amyloid beta with ferritin yields an isolated oligomeric beta-sheet-rich aggregate inside the ferritin cage
Biomater. Sci., 12, 2408-2417 (2024). DOI:10.1039/D4BM00173G


(11) T. T. Pham, S. Abe,* K. Date, K. Hirata, T. Suzuki, and T. Ueno*
Displaying a protein cage on a protein crystal by in-cell crystal engineering
Nano Lett., 23, 10118–10125 (2023). DOI:10.1021/acs.nanolett.3c02117
(10) J. Tanaka, S. Abe,* T. Hayakawa, M. Kojima, K. Yamashita, K. Hirata, T. Ueno*
Crystal structure of the in-cell Cry1Aa purified from Bacillus thuringiensis
Biochem. Biophys. Res. Commun., 685, 149144 (2023). DOI:10.1016/j.bbrc.2023.149144
(9) B. Maity, J. Tian, T. Furuta, S. Abe, T. Ueno*
Atomic-Level Insights into a Unique Semi-Clathrate Hydrate Formed in a Confined Environment of Porous Protein Crystal
Cryst. Growth Des., 23, 7448–7458 (2023). DOI:10.1021/acs.cgd.3c00880
(8) T. T. Pham, S. Abe,* K. Hirata, K. Katayama, T. Ueno*
A Protein Needle Facilitates Encapsulation of Target Proteins via In-Cell Protein Crystallization
Chem. Lett., 52, 720–723 (2023). DOI:10.1246/cl.230282
(7) T. Z. Pan, B. Maity, S. Abe, T. Morita, T. Ueno*
In-Cell Engineering of Protein Crystals into Hybrid Solid Catalysts for Artificial Photosynthesis
Nano Lett., 23, 6744–6751 (2023). DOI:10.1021/acs.nanolett.3c02355
(6) C. Lu, X. Peng, B. Maity, X. Sheng, Y. Zhou, T. Ueno, Z. Liu, D. Lu*
Novel Au(I)-based artificial metallo-cycloisomerase for catalyzing the cycloisomerization of γ-alkynoic acids
ACS Catal., 13, 9918–9924 (2023). DOI:10.1021/acscatal.3c01197
(5) D. Loreto, B. Maity, T. Morita, H. Nakamura, A. Merlino*, and T. Ueno*
Cross-linked crystals of dirhodium tetraacetate/RNase A adduct can be used as heterogeneous catalysts
Inorg. Chem., 62, 7515–7524 (2023). DOI:10.1021/acs.inorgchem.3c00852
(4) Y. Hishikawa, H. Noya, S. Nagatoishi, T. Yoshidome, B. Maity, K. Tsumoto, S. Abe, and T. Ueno*
Elucidating Conformational Dynamics and Thermostability of Designed Aromatic Clusters by Using Protein Cages
Chem. Eur. J., 29, e202300488 (2023). DOI:10.1002/chem.202300488
(3) Y. Zhou, Y. Zheng, C. Lu, B. Maity, Y. Chen, T. Ueno*, Z. Liu, and D. Lu*
Apo-ferritin Caged Pt Nanoparticles for Selective Hydrogenation of p-Chloronitrobenzene
ACS Appl. Nano Mater., 6, 5835-5843 (2023). DOI:10.1021/acsanm.3c00231
(2) B. Maity, and T. Ueno
A Generalized Method for Metal Fixation in Horse Spleen L-Ferritin Cage
Meth. Mol. Biol., 2671, 135–145 (2023). DOI:10.1007/978-1-0716-3222-2_8
(1) S. Abe, and T. Ueno*
Functionalization of Artificial Metalloenzymes
Functional Polymer Complexes, in press.


(7) K. Kikuchi, K. Date, and T. Ueno*
Design of a Hierarchical Assembly at a Solid-liquid Interface using an Asymmetric Protein Needle
Langmuir, 39, 2389-2397 (2023). DOI:10.1021/acs.langmuir.2c03146
(6) M. Kojima, S. Abe, T. Furuta, D. P. Tran, K. Hirata, K. Yamashita, Y. Hishikawa, A. Kitao, and T. Ueno*
Engineering of an in-cell protein crystal for fastening a metastable conformation of a target miniprotein
Biomater. Sci., 11, 1350-1357 (2023). DOI:10.1039/D2BM01759H
(5) S. Abe,* J. Tanaka, M. Kojma, S. Kanamaru, K. Hirata, K. Yamashita, A. Kobayashi, and T. Ueno*
Cell-free Protein Crystallization for Nanocrystal Structure Determination
Sci. Rep., 12, 16031 (2022). DOI:10.1038/s41598-022-19681-9
(4) B. Maity, M. Taher, S. Mazumdar*, and T. Ueno*
Artificial metalloenzymes based on protein assembly
Coord. Chem. Rev., 469, 214593 (2022). DOI:10.1016/j.ccr.2022.214593
(3) C. Lu, B. Maity, X. Peng, N. Ito, S. Abe, X. Sheng, T. Ueno, D. Lu
Design of a gold clustering site in an engineered apo-ferritin cage
Commun. Chem., 5, 39 (2022). DOI:10.1038/s42004-022-00651-1
(2) M. Taher, B. Maity, T. Nakane, S. Abe, T. Ueno, and S. Mazumdar
Controlled Uptake of an Iridium Complex inside Engineered apo-Ferritin Nanocages: Study of Structure and Catalysis
Angew. Chem. Int. Ed., 61, e2021116623 (2022). DOI: 10.1002/anie.202116623
(1) 安部 聡, 上野隆史
トピックス タンパク質カゴ「フェリチン」に組み込んだ金属錯体による不斉反応の効率化
バイオサイエンスとインダストリー, 80, 478-479 (2022). DOI: 10.1002/anie.202116623


(10) Z.P. Li, B. Maity, Y. Hishikawa, T. Ueno, D. Lu
The Importance of Subunit-subunit Interface on Ferritin Disassembly: A Molecular Dynamics Study
Langmuir, 38, 1106–1113 (2022). DOI:10.1021/acs.langmuir.1c02753
(9) M. Kojima, S. Abe, T. Ueno
Engineering of protein crystals for use as solid biomaterials
Biomater. Sci., 10, 354-367 (2022). DOI:10.1039/D1BM01752G
(selected as a HOT Biomaterials Science article!!)
(8) K. Kikuchi, T. Fukuyama, T. Uchihashi, T. Furuta, Y. T. Maeda, T. Ueno
Protein Needles Designed to Self-assemble through Needle Tip Engineering
Small, 18, 2106401 (2022). DOI:10.1002/smll.202106401
(7) Q. D. Nguyen, K. Kikuchi, M. Kojima, and T. Ueno
Dynamic behavior of cargo proteins regulated by linker peptides on a protein needle scaffold
Chem. Lett., 51, 73-76 (2022). DOI:10.1246/cl.210599
(6) A. Ismail, K. Kerdpol, T. Rungrotmongkol, K. Tananuwong, T. Ueno, S. Ekasit, N. Muangsin and K. Krusong
Solubility enhancement of poorly water soluble domperidone by complexation with the large ring cyclodextrin
Int. J. Pharm., 606, 120909 (2021). DOI:10.1016/j.ijpharm.2021.120909
(5) S. Abe, T. T. Pham, H. Negishi, K. Yamashita, K. Hirata and T. Ueno
Design of an In-Cell Protein Crystal for the Environmentally Responsive Construction of a Supramolecular Filament
Angew. Chem. Int. Ed., 60, 12341-12345 (2021). DOI:10.1002/anie.202102039
(4) Q. D. Nguyen, K. Kikuchi, B. Maity and T. Ueno
The versatile manipulations of self-assembled proteins in vaccine design
Int. J. Mol. Sci., 22, 1934-1954 (2021) DOI:10.3390/ijms22041934
(3) T. K. Nguyen, S. Abe, M. Kasamatsu, B. Maity, K. Yamashita, K. Hirata, M. Kojima and T. Ueno
In-Cell Engineering of Protein Crystals with Nanoporous Structures for Promoting Cascade Reactions
ACS Appl. Nano. Mater., 4, 1672-1681 (2021) DOI:10.1021/acsanm.0c03129
(2) H. Tabe and T. Ueno
Construction of Multistep Catalytic Systems in Protein Assemblies
Cell-Inspired Materials and Engineering, Springer, ISBN: 978-3-030-55924-3.
(1) 上野隆史
現代化学, 601, 52-55, 4月号 (2021).



(5) B. Maity, Z.P. Li, K. Niwase, C. Ganser, T. Furuta†, T. Uchihashi, D. Lu and T. Ueno
Single-molecule level dynamic observation of disassembly of the apo-ferritin cage in solution
PCCP, 22, 18562-18572 (2020) DOI:10.1039/D0CP02069A
(4) Y. Hishikawa, B. Maity, N. Ito, S. Abe, D. Lu and T. Ueno
Design of Multinuclear Gold Binding Site at the Two-fold Symmetric Interface of the Ferritin Cage
Chem. Lett., 49, 840-844 (2020) DOI:10.1246/cl.200217
(3) S. Sato, M. Matsumura, T. Kadonosono, S. Abe, T. Ueno, H. Ueda, H. Nakamura
Site-Selective Protein Chemical Modification of Exposed Tyrosine Residues Using Tyrosine Click Reaction
Bioconjugate Chem., 31, 1417-1424 (2020) DOI:10.1021/acs.bioconjchem.0c00120
(2) T. Ueno, K. Niwase, D. Tsubokawa, K. Kikuchi, N. Takai, T. Furuta, R. Kawano, T. Uchihashi
Dynamic behavior of an artificial protein needle contacting a membrane observed by high-speed atomic force microscopy
Nanoscale, 12, 8166-8173 (2020) DOI:10.1039/D0NR01121E
(1) Y. Watanabe, Y. Aiba, S. Ariyasu, and S. Abe
Bull. Chem. Soc. Japan, 93, 379-392 (2020) DOI:10.1246/bcsj.20190305


(5) S. Abe, N. Ito, B. Maity, C. L. Lu, D. N. Lu, and T. Ueno
Coordination design of cadmium ions at the 4-fold axis channel of the apo-ferritin cage
Dalton Trans., 48, 9759-9764 (2019). DOI:10.1039/C9DT00609E
(4) B. Maity, Y. Hishikawa, D.N. Lu, and T. Ueno
Recent progresses in the accumulation of metal ions into the apo-ferritin cage: Experimental and theoretical perspectives
Polyhedron, 172, 104-111 (2019). DOI:10.1016/j.poly.2019.03.048
(3) T. K. Nguyen, T. T. Pham, and T Ueno
Engineering of protein crystals for development of bionanomaterials
Jpn. J. Appl. Phys., 58, SI0802 (2019). DOI:10.7567/1347-4065/ab1399
(2) 安部 聡、上野隆史
(1) 安部 聡、上野隆史


(8) T. Hashimoto, Y.X. Ye, A. Matsuno, Y. Ohnishi, A. Kitamura, M. Kinjo, S. Abe, T. Ueno, M. Yao, T. Ogawa, T. Matsui, Y. Tanaka
Encapsulation of biomacromolecules by soaking and co-crystallization into porous protein crystals of hemocyanin
BBRC, 509, 577-584 (2019). DOI:10.1016/j.bbrc.2018.12.096
(7) T. K. Nguyen, H. Negishi, S. Abe, and T. Ueno*
Construction of Supramolecular Nanotubes from Protein Crystals
Chem. Sci., 10, 1046-1051 (2019). DOI: 10.1039/C8SC04167A
(6) F. Hyodo,* T. Sho, B. Maity, K. Fujita, Y. Tachibana, S. Akashi, M. Mano, Y. Hishikawa, M. Matsuo, T. Nakaji, and T. Ueno*
Photo-induced In Vivo MRI Imaging with Rapid CO Release from an MnCO-Protein Needle Composite
Chem. Euro. J., 24, 11578-11583 (2018). DOI:10.1002/chem.201802445
(5) H. Mori, N. Oda, S. Abe, T. Ueno, W.L. Zhu, C. Pernstich, G. Pezzotti
Raman spectroscopy insight into Norovirus encapsulation in Bombyx mori cypovirus cubic microcrystals
Spectrochim. Acta A, 203, 19-30 (2018). DOI:10.1016/j.saa.2018.05.066
(4) H. Negishi, S. Abe, K. Yamashita, K. Hirata, K. Niwase, M. Boudes, F. Coulibaly, H. Mori, and T. Ueno
Supramolecular protein cages constructed from a crystalline protein matrix
Chem. Commun., 54, 1988-1991 (2018). DOI:10.1039/C7CC08689J
(3) H. Tabe, H. Takahashi, T. Shimoi, S. Abe, T. Ueno, Y. Yamada
Photocatalytic hydrogen evolution systems constructed in cross-linked porous protein crystals
Appl. Catal., B, 237, 1124-1129 (2018). DOI:10.1016/j.apcatb.2018.01.046
(2) B. Maity, S. Abe, T. Ueno*
Tailoring Organometallic Complexes into Protein Scaffolds: Structures and Functions
Advances in Bioorganometallic Chemistry, 329-346 (2019).
(1) 上野隆史
生命機能に迫る分子化学(CSJカレントレビュー30、化学同人)Ch12, 2018.


(8) T. K. Nguyen and T. Ueno
Engineering of Protein Assemblies within Cells
Curr. Opin. Struct. Biol., 51, 1-8 (2018). DOI:10.1016/
(7) S. Ryu, Y. Matsumoto, T. Matsumoto, T. Ueno,
Y. R. Silberberg, and C. Nakamura
Improved efficiency of nanoneedle insertion by modification with a cell-puncturing protein
Jpn. J. Appl. Phys., 57, 03EB02 (2018).
(6) S. Abe, B. Maity, and T. Ueno
Functionalization of protein crystals with metal ions,complexes and nanoparticles
Curr. Opin. Chem. Biol., 43, 68-76 (2018). DOI:10.1016/j.cbpa.2017.11.015
(5) H. Inaba, and T. Ueno
Artificial bio-nanomachines based on protein needles derived from bacteriophage T4
Biophys. Rev., 10, 641-658 (2018). DOI:10.1007/s12551-017-0336-9
(4) S. Abe, K. Atsumi, K. Yamashita, K. Hirata, H. Mori, and T. Ueno
Structure of in cell protein crystals containing organometallic complexes
PCCP, 20, 2986-2989 (2018). DOI:10.1039/C7CP06651A
(3) B. Maity, S. Abe, and T. Ueno
Observation of gold sub-nanocluster nucleation within a crystalline protein cage
Nat. Commun., 8,14820 (2017). DOI:10.1038/ncomms14820
(2) S. Abe, H. Tabe, H. Ijiri, K. Yamashita, K. Hirata, K. Atsumi, T. Shimoi, M. Akai, H. Mori, S. Kitagawa and T. Ueno
Crystal Engineering of Self-Assembled Porous Protein Materials in Living Cells
ACS Nano, 11, 2410-2419 (2017). DOI:10.1021/acsnano.6b06099
(1) 安部 聡、上野隆史
有機合成化学協会誌, 75, 1264-1273 (2017).


(5) B. Maity, and T. Ueno
Design of Bioinorganic Materials At the Interface of Coordination and Biosupramolecular Chemistry
Chem. Rec., 17, 383-398 (2017) (Selected as a Front Cover). DOI:10.1002/tcr.201600122
(4) B. Maity, K. Fukumori, S. Abe and T. Ueno
Immobilization of two organometallic complexes into a single cage to construct protein-based microcompartment
Chem. Commun., 52, 5463-5466 (2016). DOI:10.1039/C6CC00679E
(3) H. Tabe, T. Shimoi, M. Boudes, S. Abe, F. Coulibaly, S. Kitagawa, H. Mori, T. Ueno
Photoactivatable CO Release from Engineered Protein Crystals to Modulate NF-κB Activation
Chem. Commun., 52, 4545-4548 (2016). DOI:10.1039/C5CC10440H
(2) S. Abe, B. Maity, and T. Ueno
Design of a Confined Environment using a Protein Cage and Crystals in Development of Biohybrid Materials
Chem. Commun., 52, 6496-6512 (2016). (Selected as an Inside Front Cover) DOI:10.1039/C6CC01355D
(1) 安部 聡、上野隆史
フロンティア生物無機化学(錯体化学会フロンティア選書、三共出版)pp476-496 (2016).


(12) S. Abe, H. Ijiri, H. Negishi, H. Yamanaka, K. Sasaki, K. Hirata, H. Mori, and T. Ueno
Design of Enzyme-Encapsulated Protein Containers by in Vivo Crystal Engineering
Adv. Mater., 27, 7951-7956 (2015). DOI:10.1002/adma.201503827
(Featured on Kagaku Kogyo Nippo (Oct. 26, 2015), Nikkan Kogyo shinbun (Oct. 27, 2015), and Kyoto Shinbun (Nov. 03, 2015))
(11) H. Nakajima, M. Kondo, T. Nakane, S. Abe, T. Nakao, Y. Watanabe and T. Ueno
Construction of an enterobactin analogue with symmetrically arranged monomer subunits of ferritin
Chem. Commun., 51, 16609-16612(2015). (Selected as an Inside Front Cover) DOI:10.1039/C5CC06904A
(10) H. Inaba, N.J.M. Sanghamitra, K. Fujita, T. Sho, T. Kuchimaru, S. Kitagawa, S. Kizaka-Kondohc, and T. Ueno
A metal carbonyl-protein needle composite designed for intracellular CO delivery to modulate NF-κB activity
Mol. BioSyst., 11, 3111-3118 (2015). DOI: 10.1039/C5MB00327J
(9) K. Fujita, Y. Tanaka, S. Abe and T. Ueno
A Photoactive CO Releasing Protein Cage for Dose-Regulated Delivery in Living Cells
Angew. Chem. Int. Ed., 55, 1056-1060 (2016). (selected as a Hot Paper). DOI: 10.1002/anie.201506738.
(Featured on Kagaku Kogyo Nippo (Sep. 11, 2015), PHYS.ORG, and
(8) H. Inaba, K. Fujita and T. Ueno
Design of Biomaterials for intracellular delivery of carbon monoxide
Biomaterials Science, 3, 1423-1438 (2015). DOI: 10.1039/C5BM00210A
(7) S. Abe and T. Ueno
Design of Protein Crystals in the Development of Solid Biomaterials
RSC Advances, 5, 21366-21375 (2015).DOI: 10.1039/C4RA16748A
(6) T. Ueno (Guest Editor)
Special Issue: Artificial Metalloenzymes
Isr. J. Chem., 55. (2015). DOI: 10.1002/ijch.201410018
(Highlighted in Wiley-Japan Science caffe)
(5) 稲葉央、安部聡、上野隆史
化学, 70, 41-46 (2015).
(4) 藤田健太、上野隆史
酵素工学ニュース, 73, 14-16 (2015).
(3) 稲葉央、上野隆史
生物物理, 55, 89-91 (2015).
(2) 安部聡、上野隆史
化学工業, 66, 264-272 (2015).
(1) 藤田健太、上野隆史
日本アイソトープ協会“ISOTOPE NEWS”, 64, 2-6 (2015).


(9) B. Maity, K. Fujita and T. Ueno
Use of the Confined Spaces of Apo-Ferritin and Virus Capsids as Nanoreactors for Catalytic Reactions
Curr. Opin. Chem. Biol., 25, 88-97 (2015). DOI: 10.1016/j.cbpa.2014.12.026
(8) H. Tabe, T. Shimoi, K. Fujita, S. Abe, H. Ijiri, M. Tsujimoto, T. Kuchimaru, S. Kizaka-Kondo, H. Mori, S. Kitagawa and T. Ueno
Design of a CO-releasing Extracellular Scaffold using in-vivo Protein Crystals
Chem. Lett., 44, 342-344 (2015). DOI: org/10.1246/cl.141035
(7) H. Tabe, K. Fujita, S. Abe, M. Tsujimoto, T. Kuchimaru, S. Kizaka-Kondoh, M. Takano, S. Kitagawa, and T. Ueno
Preparation of a Cross-linked Porous Protein Crystal containing Ru carbonyl complexes as a CO-releasing Extracellular Scaffold
Inorg. Chem., 54, 215-220 (2015). DOI: 10.1021/ic502159x
(6) K. Fujita, Y. Tanaka, T. Sho, S. Ozeki, S. Abe, T. Hikage, T. Kuchimaru, S. Kizaka-Kondoh, and T. Ueno
Intracellular CO Release from Composite of Ferritin and Ruthenium Carbonyl Complexes
J. Am. Chem. Soc., 136, 16902-16908 (2014). DOI: 10.1021/ja508938f.
(Featured on The Nikkei-sangyo (Nov. 21, 2014), Zaikei shinbun (Nov. 24, 2014), Nikkan Kogyo shinbun (Nov. 25, 2014), PHYS.ORG,, and nanowerk.)
(5) S. Abe, Y. Tokura, R. Pal, N. Komura, A. Imamura, K. Matsumoto, H. Ijiri, N. J. M. Sanghamitra, H. Tabe, H. Ando, M. Kiso, H. Mori, S. Kitagawa, and T. Ueno
Surface Functionalization of Protein Crystals with Carbohydrate Using Site-selective Bioconjugation
Chem. Lett., 44, 29-31 (2015). DOI: 10.1246/cl.140865
(4) N. J. M. Sanghamitra, H. Inaba, F. Arisaka, D. -O. Wang, S. Kanamaru, S. Kitagawa, and T. Ueno
Plasma membrane translocation of a protein needle based on a triple-stranded β-helix motif
Mol. BioSyst., 10, 2677-2683 (2014). DOI: 10.1039/C4MB00293H
(3) H. Inaba, S. Kitagawa, and T. Ueno
Protein needles as molecular templates for artificial metalloenzymes
Isr. J. Chem., 55, 40-50 (2015). DOI: 10.1002/ijch.201400097.
(2) H. Inaba, N. J. M. Sanghamitra, T. Fukai, T. Matsumoto, K. Nishijo, S. Kanamaru, F. Arisaka, S. Kitagawa, and T. Ueno
Intracellular Protein Delivery System with Protein Needle-GFP Construct
(Selected for virtual collection of “Drug Delivery”)
Chem. Lett., 43, 1505-1507 (2014). DOI:10.1246/cl.140481 (Selected for virtual collection of “Drug Delivery“)
(1) H. Tabe, S. Abe, T. Hikage, S. Kitagawa and T. Ueno
Porous Protein Crystals as Catalytic Vessels for Organometallic Complexes
Chem. Asian J., 9,1373-1378 (2014). (Selected as a Cover Picture) DOI: 10.1002/asia.201301347


(11) T. Ueno
Porous Protein Crystals as Reaction Vessels
Chem. Euro. J., 19, 9096-9102 (2013). (Selected as a Concept article) DOI: 10.1002/chem.201300250
(10) T. Ueno, H. Tabe, and Y. Tanaka
Artificial Metalloenzymes Constructed From Hierarchically-Assembled Proteins
Chem. Asian J., 8, 1646-1660 (2013). DOI: 10.1002/asia.201300347
(Highlighted in Wiley-Japan Science Caffe)
(9) Nusrat J. M. Sanghamitra and T. Ueno
Expanding coordination chemistry from protein to protein assembly
Chem. Commun., 49, 4114-4126 (2013). (Selected as a feature article in the ‘Emerging Investigators 2013 issue) DOI: 10.1039/C2CC36935D
(8) Nusrat J M Sanghamitra, H. Inaba, S. Kitagawa, and T. Ueno
Inorganic Design of Protein Assemblies as Supramolecular Platforms
J. Inorg. Org. Polym., 23, 50-60 (2013). DOI: 10.1007/s10904-012-9728-2
(7) T. Ueno
Chapter 7. Coordination Chemistry in Self-assembly Proteins
Metal-Molecular Assembly for Functional Materials (SpringerBriefs in Molecular Science), Yutaka Matsuo, Ed, Springer, ISBN: 978-4431543695.
(6) S. Abe, and T. Ueno
Chapter 7. Catalytic Reactions Promoted in Protein Assembly Cages
Coordination Chemistry in Protein Cages-Principles, Design and Applications, Wiley, ISBN: 978-1-118-07857-0.
(5) Ueno, and Y. Watanabe, Eds.
Coordination Chemistry in Protein Cages-Principles, Design and Applications, Wiley, ISBN: 978-1-118-07857-0.
(4) S Abe, and T. Ueno
Coordination of Organometallic Palladium Complexes in Apoferritin
Encyclopedia of Metalloproteins, Springer, ISBN 978-1-4614-1532-9.
(3) 上野隆史
Bull. Jpn. Soc. Coord. Chem., 62, 44-47 (2013).
(2) 上野隆史
高分子, 63, 172-173 (2013).
(1) 安部聡、上野隆史
日本結晶学会誌, 55, 81-85, 2013.


(5) Z.-F. Ke, S. Abe, T. Ueno, and K. Morokuma
Catalytic Mechanism in Artificial Metalloenzyme: QM/MM Study of Phenylacetylene Polymerization by Rhodium Complex Encapsulated in apo-Ferritin
J. Am. Chem. Soc., 134, 15418-15429 (2012). DOI: 10.1021/ja305453w
(4) H. Inaba , S. Kanamaru , F. Arisaka , S. Kitagawa and T. Ueno
Semi-synthesis of an artificial scandium(III) enzyme with a β-helical bio-nanotube
Dalton Trans., 41, 11424-11427 (2012). DOI: 10.1039/c2dt31030a
(3) J.-K. Xu , O. Shoji , T. Fujishiro , T. Ohki , T. Ueno and Y. Watanabe
Construction of biocatalysts using the myoglobin scaffold for the synthesis of indigo from indole
Cat. Sci. Technol., 2, 739-744 (2012). DOI: 10.1039/c2cy00427e
(2)  S. Abe, M. Tsujimoto, K. Yoneda, M. Ohba, T. Hikage, M. Takano, S. Kitagawa and T. Ueno
Porous Lysozyme Crystals as Reaction Vessels for Preparation of Magnetic CoPt Nanoparticles
Small, 8, 1314-1319 (2012). DOI: 10.1002/smll.201101866
(1) Nusrat J.M. Sanghamitra and T. Ueno
Chapter 10. Biocatalysis and Enzyme Stability in Ionic Liquids
Green Solvents II, Properties and Applications in Chemistry, Springer, Ali Mohammad, Dr. Inamuddin Eds, 2012.


(6) Z.-F. Ke, S. Abe, T. Ueno, and K. Morokuma
Rh-catalyzed Polymerization of Phenylacetylene: Theoretical Studies of the Reaction Mechanism, Regioselectivity and Stereoregularity
J. Am. Chem. Soc., 133, 7926-7941 (2011). DOI: 10.1021/ja2012565
(5) T. Koshiyama, M. Shirai, T. Hikage, H. Tabe, K. Tanaka, S. Kitagawa and T. Ueno
Post-Crystal Engineering of Zinc-Substituted Myoglobin to Construct a Long-lived Photo-induced Charge Separation System
Angew. Chem. Int. Ed., 50, 4849-4852 (2011). DOI: 10.1002/anie.201008004
(4) Y. Takezawa, P. Böckmann, N. Sugi, Z. Wang, S. Abe, T. Murakami, T. Hikage, G. Erker, Y. Watanabe, S. Kitagawa and T. Ueno
Incorporation of Organometallic Ru Complexes into Apo-Ferritin Cage
Dalton. Trans., 40, 2190-2196 (2011) (Selected in the ‘New Talent: Asia’ issue and hot paper). DOI: 10.1039/c0dt00955e
(3) N. Yokoi, Y. Miura, C.-Y. Huang, N. Takatani, H. Inaba, T. Koshiyama, S. Kanamaru, F. Arisaka, Y. Watanabe, S. Kitagawa, and T. Ueno
Dual modification of a triple-stranded b-helix nanotube with Ru and Re metal complexes to promote photocatalytic reduction of CO2
Chem. Commun., 47, 2074-2076 (2011). DOI: 10.1039/c0cc03015e
(2) Wang,Y. Takezawa,H. Aoyagi,S. Abe,T. Hikage, Y. Watanabe,S. Kitagawa,and T. Ueno
Definite Coordination Arrangement of Organometallic Palladium Complexes Accumulated on the Designed Interior Surface of Apo-ferritin
Chem. Commun., 47, 170-172 (2011) (Selected in the ‘Emerging Investigators’ issue and as a back cover). DOI: 10.1039/c0cc02221g
(1) 上野隆史
「高分子」60, 6月号, 399-400 (2011)



(7) N. Yokoi, H. Inaba, M. Terauchi, A. Z. Stieg, N. J. M. Sanghamitra, T. Koshiyama, K. Yutani, S. Kanamaru, F. Arisaka, T. Hikage, A. Suzuki, T. Yamane, J. K. Gimzewski, Y. Watanabe, S. Kitagawa and T. Ueno
Construction of Robust Bio-nanotube by Controlled Self-assembly of Component Proteins of Bacteriophege T4
Small, 6, 1873-1879 (2010) (selected as an inside cover picture). DOI: 10.1002/smll.201000772
(6) S. Abe, T. Hikage, Y. Watanabe, S. Kitagawa, and T. Ueno
Mechanism of Accumulation and Incorporation of Organometallic Pd Complexes into the Protein Nanocage of apo-Ferritin
Inorg. Chem., 49, 6967-6973 (2010). DOI: 10.1021/ic1003758
(5) T. Ueno, S. Abe, T. Koshiyama, T. Ohki, T. Hikage, and Y. Watanabe
Metal Ion Accumulation Induced by Hydrogen Bonds on Protein Surfaces: Mechanistic Insights into the Initiation Steps of Biomineralization Obtained using Porous Lysozyme Crystals Containing Rh(III) Ions
Chem. Eur. J., 16, 2730-2740 (2010) (Highlight paper). DOI: 10.1002/chem.200903269
(4) T. Koshiyama, N. Kawaba, T. Hikage, M. Shirai, Y. Miura, C.-Y. Huang, K. Tanaka, Y. Watanabe, and T. Ueno
Modification of Porous Protein Crystals in Development of Bio-hybrid Materials
Bioconjugate Chem., 21, 264-269 (2010). DOI: 10.1021/bc9003052
(3) T. Ueno
An Engineered Metalloprotein as a Functional and Structural Bioinorganic Model System
Angew. Chem. Int. Ed., 49, 3868-3869 (2010). DOI: 10.1002/anie.201000337
(2) 上野隆史
金属と分子集合 監修 松尾 豊(シーエムシー出版)pp 5-23 (2010). 
(1) 上野隆史
現代化学 2月号(東京化学同人)No. 467, pp 54-59 (2010).


(8) S. Abe, K. Hirata, T. Ueno, K. Morino, N. Shimizu, M. Yamamoto, M. Takata, E. Yashima, and Y. Watanabe
Polymerization of Phenylacetylene by Rhodium Complexes within a Discrete Space of apo-Ferritin
J. Am. Chem. Soc., 131, 6958-6960 (2009) (Highlighted on Nature Chemistry) DOI: 10.1021/ja901234j
(7) T. Ueno,* M. Abe, K. Hirata, S. Abe, M. Suzuki, N. Shimizu, M. Yamamoto, M. Takata, Y. Watanabe
Process of Accumulation of Metal Ions on the Interior Surface of apo-Ferritin: Crystal Structures of a Series of apo-Ferritins Containing Variable Quantities of Pd(II) Ions
J. Am. Chem. Soc., 131, 5094-5100 (2009) (日経産業新聞 他四誌掲載). DOI: 10.1021/ja806688s
(6) M. Suzuki, M. Abe, T. Ueno, S. Abe, T. Goto, Y. Toda, T. Akita, Y. Yamada, Y. Watanabe
Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in Apo-Ferritin
Chem. Commun., 4871-4873 (2009). DOI: 10.1039/B908742G
(5) T. Koshiyama, T. Ueno, S. Kanamaru, F. Arisaka, and Y. Watanabe
Construction of an Energy Transfer System in the Bio-nanocup Space by Heteromeric Assembly of gp27 and gp5 Proteins Isolated From Bacteriophage T4
Org. Biomol. Chem., 7, 2649-2654 (2009). DOI: 10.1039/B904297K
(4) S. Abe, T. Ueno, and Y. Watanabe
Artificial Metalloproteins Exploting Vacant Space: Preparation Structures, and Functions
Top. Organomet. Chem., 25, pp 25-44 (2009).
(3) 渡辺芳人、安部 聡、上野隆史
ナノ空間材料の創成と応用 有賀克彦 編集(フロンティア出版)pp 72-79 (2009)
(2) 安部 聡、上野隆史
超分子金属錯体(錯体化学会選書、三共出版)pp 176-188 (2009)
(1) 渡辺芳人、上野隆史
配位空間の化学 北川 進 監修(シーエムシー出版)pp 301-311 (2009)


(8) J. Niemeyer, S. Abe, T. Hikage, T. Ueno*, G. Erker and Y. Watanabe
Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin
Chem. Commun., 6519-6521(2008). DOI: 10.1039/B813181C
(7) S. Abe, J. Niemeyer, M. Abe, Y. Takezawa, T. Ueno,* T. Hikage, G. Erker, and Y. Watanabe
Control of the Coordination Structure of Organometallic Palladium Complexes in an apo-Ferritin Cage
J. Am. Chem. Soc., 130, 10512-10514 (2008). DOI: 10.1021/ja802463a
(6) T. Koshiyama, N. Yokoi, T. Ueno,* S. Kanamaru, S. Nagano, Y. Shiro, F. Arisaka and Y. Watanabe
Molecular design of hetero protein assemblies providing a bio-nanocup as a chemical reactor
Small, 4, 50-54 (2008) (Highlighted in Material views) DOI: 10.1002/smll.200700855
(5) N. Yokoi, T. Ueno, M. Unno, T. Matsui, M. Ikeda-Saito and Y. Watanabe
Ligand design for the improvement of stability of metal complex•protein hybrid
Chem. Commun., 229-231(2008). DOI: 10.1039/B713468A
(4) T. Ueno
Functionalization of viral protein assemblies by self-assembly reactions
J. Mater. Chem., 18, 3741-3745(2008). DOI: 10.1039/B806296J
(3) T. Ueno
Design of Protein Scaffolds for Chemical Reactions Catalyzed by Metal Complexes and Nanoparticles
Bull. Jpn. Soc. Coord. Chem., 51, 20-30 (2008) (Award account, Japanese)
(2) 越山友美、上野隆史
蛋白質結晶の新展開 高野和文 監修(シーエムシー出版)pp 276-288 (2008)
(1) 安部聡、上野隆史
バイオナノプロセス 山下一郎 監修 (シーエムシー出版)pp 62-69 (2008)


(7) Y. Satake, S. Abe, S. Okazaki, N. Ban, T. Hikage, T. Ueno, H. Nakajima, A. Suzuki, T. Yamane, H. Nishiyama, and Y. Watanabe
Incorporation of Phebox Rhodium Complex into apo-Myoglobin Affords Stable Organometallic Protein Showing Unprecedented Arrangement of the Complex in the Cavity
Organometallics, 26, 4904 – 4908 (2007). DOI: 10.1021/om700471a
(6) S. Abe, T. Ueno, P. Reddy, S. Okazaki, T. Hikage, A. Suzuki, T. Yamane, H. Nakajima, and Y. Watanabe
Design and Structure Analysis of Artificial Metalloproteins: Selective Coordination of His64 to Copper Complexes with Square-Planar Structure in the Apo-Myoglobin Scaffold
Inorg. Chem., 46, 5137 – 5139 (2007). (selected as a cover picture) DOI: 10.1021/ic070289m
(5) T. Ueno*, T. Koshiyama, S. Abe, N. Yokoi, M. Ohashi, and H. Nakajima, and Y. Watanabe
Design of Artificial Metalloenzymes using Non-covalent Insertion of a Metal Complex into a Protein Scaffold
J. Organometal. Chem., 692, 142-147 (2007). DOI: 10.1016/j.jorganchem.2006.08.043
(4) T. Ueno, N. Yokoi, S. Abe, and Y. Watanabe
Crystal Structure Based Design of Functional Metal/Protein Hybrids
J. Inorg. Biochem., 101, 1667-1675(2007). DOI: 10.1016/j.jinorgbio.2007.06.025
(3) T. Ueno, S. Abe, N. Yokoi, and Y. Watanabe
Coordination Design of Artificial Metalloproteins Utilizing Protein Vacant Space
Coord. Chem. Rev., 251, 2717-2731(2007). DOI: 10.1016/j.ccr.2007.04.007
(2) Y. Watanabe,* H. Nakajima, and T. Ueno
Reactivities of Oxo and Peroxo Intermediates Studied by Hemoprotein Mutants
Acc. Chem. Res., 40, 554-562 (2007). DOI: 10.1021/ar600046a
(1) 上野隆史
月刊「化学」化学同人 12月号 (2007)


(3) T. Ueno*, T. Koshiyama, T. Tsuruga, T. Goto, S. Kanamaru, F. Arisaka and Y. Watanabe
Bio-nanotube tetrapod assembly by in situ synthesis of Au nanocluster with (gp5-His6)3 from bacteriophage T4
Angew. Chem. Int. Ed., 45, 4508-4512 (2006).€€  DOI: 10.1002/anie.200504588
(2) T. Ueno, N. Yokoi, M. Unno, T. Matsui, Y. Tokita, M. Yamada, M. Ikeda- Saito, H. Nakajima, and Y Watanabe
Design of Metal Cofactors Activated by Protein-Protein Electron Transfer System
Pro. Natl. Acad. Sci. USA., 103, 9416-9421 (2006). DOI: 10.1073/pnas.0510968103
(1) 渡辺芳人、上野隆史
化学フロンティア16 チャンピオンレコードをもつ金属錯体最前線
pp 72-81 (2006)


(3) T. Ueno, T. Koshiyama, M. Ohashi, K. Kondo, M. Kono, A. Suzuki, T. Yamane, and Y. Watanabe
Coordinated Design of Cofactor and Active Site Structures in Development of New Protein Catalysts
J. Am. Chem. Soc., 127, 6556-6562 (2005). DOI: 10.1021/ja045995q
(2) A. Chatterji, W. F. Ochoa, T. Ueno, T. Lin, and J. E. Johnson
A Virus-Based Nanoblock with Tunable Electrostatic Properties
Nano Lett., 5, 597-602 (2005). DOI: 10.1021/nl048007s
(1) T. D. Pfister, T. Ohki, T. Ueno, I. Hara, S. Adachi, Y. Makino, N. Ueyama, Y. Lu, and Y. Watanabe
Mutant and Hydrogen Peroxide Myoglobin Mutants as a Model for P450 Hydroxylation Chemistry
J. Biol. Chem., 280. 12858-12866 (2005). DOI: 10.1074/jbc.M410853200


(7) S. Kato, T. Ueno, S. Fukuzumi, and Y. Watanabe
Catalase Reaction by Myoglobin Mutants and Native Catalase – Mechanistic Investigation by Kinetic Isotope Effect
J. Biol. Chem., 279, 52376-52381 (2004). DOI: 10.1074/jbc.M403532200
(6) T. Ueno, M. Ohashi, M. Kono, K. Kondo, A. Suzuki, T. Yamane, and Y. Watanabe
Crystal Structures of Artificial Metalloproteins: Tight Binding of FeIII(Schiff Base) by Mutation of Ala71 to Gly in Apo-Myoglobin
Inorg. Chem., 43, 2852-2858 (2004).€€ DOI: 10.1021/ic0498539
(5) T. Ueno,* M. Suzuki, T. Goto, T. Matsumoto, K. Nagayama, and Y. Watanabe
Size Selective Olefin Hydrogenation by a Pd Nanocluster Provided in the Apo-Ferritin Cage
Angew. Chem. Int. Ed., 43, 2527-2530 (2004) DOI: 10.1002/anie.200353436
(4) M. Kamiya, Y. Kumaki, K. Nitta, T. Ueno, Y. Watanabe, K. Yamada, T. Matsumoto, K. Hikichi, and N. Matsushima
Copper Binding to Plant Ozone-Inducible Proteins (OI2-2 and OI14-3)
Biochem. Biophys. Res. Commun., 314, 908-915 (2004). DOI: 10.1016/j.bbrc.2003.12.158
(3) H. Sato, T. Hayashi,* T. Ando, Y. Hisaeda,* T. Ueno, and Y. Watanabe
Hybridization of Modified-Heme Reconstitution and Distal Histidine Mutation to Functionalize Sperm Whale Myoglobin
J. Am. Chem. Soc., 126, 436-437 (2004). DOI: 10.1021/ja038798k
(2) T. Ueno, T. Ohki, and Y. Watanabe
Molecular Engineering of Cytochrome P450 and Myoglobin for Selective Oxygenations
J. Porphyrins Phthalocyanines, 8, 279-289 (2004). DOI: 10.1142/S108842460400026X
(1) 上野隆史、渡辺芳人
月刊「化学」59, 70-71, (2004)


(3) H. -J Yang, T. Matsui, S. Ozaki, S. Kato, T. Ueno, G. N. Phillips, Jr., S. Fukuzumi, and Y. Watanabe
Molecular Engineering of Myoglobin: Influence of Residue-68 on the Rate and the Enantioselectivity of Oxidation Reactions Catalyzed by H64D/V68X Mb
Biochemistry, 42, 10174-10181 (2003). DOI: 10.1021/bi034605u
(2) M. Ohashi, T. Koshiyama, T. Ueno, M. Yanase, H. Fujii, and Y. Watanabe
Preparation of Artificial Metalloenzymes by Insertion of Chromium(III) Schiff Base Complexes into Apo-Myoglobin Mutants
Angew. Chem. Int. Ed., 42, 1005-1008 (2003). DOI: 10.1002/anie.200390256
(1) Y. Watanabe* and T. Ueno
Introduction of P450, Peroxidase, and Catalase Activities into Myoglobin by Site-Directed Mutagenesis: Diverse Reactivities of Compound I
Bull. Chem. Soc. Jpn., 76, 1309-1322 (2003). DOI: 10.1246/bcsj.76.1309


(1) S. Kato, H. -J. Yang, T. Ueno, S. Ozaki, G. N. Phillips, Jr., S. Fukuzumi, and Y. Watanabe
Asymmetric Sulfoxidation and Amine Binding by H64D/V68A and H64D/V68S Mb: Mechanistic Insight into the Chiral Discrimination Step
J. Am. Chem. Soc., 124, 8506-8507 (2002). DOI: 10.1021/ja0256414


(1) I. Hara, T. Ueno, S. Ozaki, S. Itoh, K. Lee, N. Ueyama, and Y. Watanabe
Oxidative Modification of Tryptophan 43 in the Heme Vicinity of the F43H/H64L Myoglobin Mutant
J. Biol. Chem., 276, 36067-36070 (2001) DOI: 10.1074/jbc.C100371200


(9) N. Ueyama, M. Inohara, A. Onoda, T. Ueno, T. Okamura, and A. Nakamura
Protection of Proton-Initiated Ligand Dissociation from Hg(II) Complexes with Bulky Cholyl Anilide Arenethiolate by NH—S Hydrogen Bonding in an Aqueous Micellar Solution
Inorg. Chem., 38, 4028-4031 (1999). DOI: 10.1021/ic9811042
(8) T. Ueno, N. Nishikawa, S. Moriyama, S. Adachi, K. Lee, T. Okamura, N. Ueyama, and A. Nakamura
Role of the Invariant Peptide Fragment Forming NH—S Hydrogen Bonds in the Active Site of Cytochrome P-450 and Chloroperoxidase: Synthesis and Properties of Cys-Containing Peptide Fe(III) and Ga(III) (Octaethylporphinato) Complexes as Models
Inorg. Chem., 38, 1199-1210 (1999). DOI: 10.1021/ic980710u
(7) T. Ueno, Y. Kousumi, K. Yoshizawa-Kumagaye, K. Nakajima, N. Ueyama, and T. Okamura and A. Nakamura
Role of Alpha-Helix Conformation Cooperating with NH—S Hydrogen Bond in the Active Site of Cytochrome P-450 and Chloroperoxidase: Synthesis and Properties of [MIII(OEP)(Cys-Helical Peptide)] (M = Fe and Ga)
J. Am. Chem. Soc., 120, 12264-12273 (1998). DOI: 10.1021/ja980016d
(6) H. Zaima, T. Unryuu, Y. Kousumi, T. Ueno, T. Okamura, N. Ueyama, and A. Nakamura
Regulation of Electrochemical Properties of Fe(II) and Fe(III) Thiolate Complexes by Hydrogen Bonding with Diamide Additive
React. Funct. Polym., 37, 225-233 (1998). DOI: 10.1016/S1381-5148(97)00172-7
(5) N. Ueyama, M. Inohara, T. Ueno, T. Okamura, and A. Nakamura
Stabilization of [4Fe-4S] Ferredoxin Model Complex by a Combination of Hydrophobic Cholyl Group and the Specific NH—S Hydrogen Bond in Aqueous Micellar Solution
Polym. J., 29, 949-951 (1997) DOI: 10.1295/polymj.29.949
(4) T. Ueno, M. Inohara M, Ueyama N, and A. Nakamura
Cooperative Redox Regulation of [4Fe-4S] Ferredoxin Model Arenethiolate Complexes by NH—S Hydrogen Bonds and an Aromatic C-H—S Interaction
Bull. Chem. Soc. Jpn., 70, 1077-1083 (1997) DOI: 10.1246/bcsj.70.1077
(3) T. Ueno, N. Ueyama, A. Nakamura
Redox Behaviour of 4Fe-4S Ferredoxin Model Arenethiolate Complexes Involving Specific NH—S Hydrogen Bonds Assisted by a Neighbouring Phenyl Group
J. Chem. Soc. Dalton, 3859-3863 (1996) DOI: 10.1039/DT9960003859
(2) W. -Y. Sun, T. Ueno, N. Ueyama, and A. Nakamura
F-19 NMR Investigations of Cobalt(II) Complexes with Cysteine-containing Peptide Ligands
Magn. Reson. Chem., 33, 174-177 (1995) DOI: 10.1002/mrc.1260330304
(1) 上野隆史、小安幸夫
解説「固体触媒開発におけるCombinatorial Chemistryの適用可能性」
触媒, 42, 268-271, (2000)