• 2024
  • 2023
  • 2022
  • 2021
  • ~2020
  • ~2010


(3) B. Maity,* M. Shoji,* F. Luo, T. Nakane, S. Abe, S. Owada, J. Kang, K. Tono, R. Tanaka, T. T. Pham, M. Kojima, Y. Hishikawa, J. Tanaka, J. Tian, M. Nagama, T. Suzuki, H. Noya, Y. Nakasuji, A. Asanuma, X. Yao, S. Iwata, Y. Shigeta, E. Nango,* and T. Ueno*
Real-time observation of a metal complex-driven reaction intermediate using a porous protein crystal and serial femtosecond crystallography
Nat. Commun., 15, 5518 (2024). DOI:10.1038/s41467-024-49814-9
(2) M. Kojima, S. Abe, T. Furuta, K. Hirata, X. Yao, A. Kobayashi, R. Kobayashi, and T. Ueno*
High-throughput structure determination of an intrinsically disordered protein using cell-free protein crystallization
PNAS, 121, e2322452121 (2024). DOI:10.1073/pnas.2322452121
(1) B. Maity, S. Kameyama, J. Tian, T. T. Pham, S. Abe, E. Chatani, K. Murata, T. Ueno*
Fusion of amyloid beta with ferritin yields an isolated oligomeric beta-sheet-rich aggregate inside the ferritin cage
Biomater. Sci., 12, 2408-2417 (2024). DOI:10.1039/D4BM00173G


(11) T. T. Pham, S. Abe,* K. Date, K. Hirata, T. Suzuki, and T. Ueno*
Displaying a protein cage on a protein crystal by in-cell crystal engineering
Nano Lett., 23, 10118–10125 (2023). DOI:10.1021/acs.nanolett.3c02117
(10) J. Tanaka, S. Abe,* T. Hayakawa, M. Kojima, K. Yamashita, K. Hirata, T. Ueno*
Crystal structure of the in-cell Cry1Aa purified from Bacillus thuringiensis
Biochem. Biophys. Res. Commun., 685, 149144 (2023). DOI:10.1016/j.bbrc.2023.149144
(9) B. Maity, J. Tian, T. Furuta, S. Abe, T. Ueno*
Atomic-Level Insights into a Unique Semi-Clathrate Hydrate Formed in a Confined Environment of Porous Protein Crystal
Cryst. Growth Des., 23, 7448–7458 (2023). DOI:10.1021/acs.cgd.3c00880
(8) T. T. Pham, S. Abe,* K. Hirata, K. Katayama, T. Ueno*
A Protein Needle Facilitates Encapsulation of Target Proteins via In-Cell Protein Crystallization
Chem. Lett., 52, 720–723 (2023). DOI:10.1246/cl.230282
(7) T. Z. Pan, B. Maity, S. Abe, T. Morita, T. Ueno*
In-Cell Engineering of Protein Crystals into Hybrid Solid Catalysts for Artificial Photosynthesis
Nano Lett., 23, 6744–6751 (2023). DOI:10.1021/acs.nanolett.3c02355
(6) C. Lu, X. Peng, B. Maity, X. Sheng, Y. Zhou, T. Ueno, Z. Liu, D. Lu*
Novel Au(I)-based artificial metallo-cycloisomerase for catalyzing the cycloisomerization of γ-alkynoic acids
ACS Catal., 13, 9918–9924 (2023). DOI:10.1021/acscatal.3c01197
(5) D. Loreto, B. Maity, T. Morita, H. Nakamura, A. Merlino*, and T. Ueno*
Cross-linked crystals of dirhodium tetraacetate/RNase A adduct can be used as heterogeneous catalysts
Inorg. Chem., 62, 7515–7524 (2023). DOI:10.1021/acs.inorgchem.3c00852
(4) Y. Hishikawa, H. Noya, S. Nagatoishi, T. Yoshidome, B. Maity, K. Tsumoto, S. Abe, and T. Ueno*
Elucidating Conformational Dynamics and Thermostability of Designed Aromatic Clusters by Using Protein Cages
Chem. Eur. J., 29, e202300488 (2023). DOI:10.1002/chem.202300488
(3) Y. Zhou, Y. Zheng, C. Lu, B. Maity, Y. Chen, T. Ueno*, Z. Liu, and D. Lu*
Apo-ferritin Caged Pt Nanoparticles for Selective Hydrogenation of p-Chloronitrobenzene
ACS Appl. Nano Mater., 6, 5835-5843 (2023). DOI:10.1021/acsanm.3c00231
(2) B. Maity, and T. Ueno
A Generalized Method for Metal Fixation in Horse Spleen L-Ferritin Cage
Meth. Mol. Biol., 2671, 135–145 (2023). DOI:10.1007/978-1-0716-3222-2_8
(1) S. Abe, and T. Ueno*
Functionalization of Artificial Metalloenzymes
Functional Polymer Complexes, in press.


(7) K. Kikuchi, K. Date, and T. Ueno*
Design of a Hierarchical Assembly at a Solid-liquid Interface using an Asymmetric Protein Needle
Langmuir, 39, 2389-2397 (2023). DOI:10.1021/acs.langmuir.2c03146
(6) M. Kojima, S. Abe, T. Furuta, D. P. Tran, K. Hirata, K. Yamashita, Y. Hishikawa, A. Kitao, and T. Ueno*
Engineering of an in-cell protein crystal for fastening a metastable conformation of a target miniprotein
Biomater. Sci., 11, 1350-1357 (2023). DOI:10.1039/D2BM01759H
(5) S. Abe,* J. Tanaka, M. Kojma, S. Kanamaru, K. Hirata, K. Yamashita, A. Kobayashi, and T. Ueno*
Cell-free Protein Crystallization for Nanocrystal Structure Determination
Sci. Rep., 12, 16031 (2022). DOI:10.1038/s41598-022-19681-9
(4) B. Maity, M. Taher, S. Mazumdar*, and T. Ueno* Artificial metalloenzymes based on protein assembly
Coord. Chem. Rev., 469, 214593 (2022). DOI:10.1016/j.ccr.2022.214593
(3) C. Lu, B. Maity, X. Peng, N. Ito, S. Abe, X. Sheng, T. Ueno, D. Lu
Design of a gold clustering site in an engineered apo-ferritin cage
Commun. Chem., 5, 39 (2022). DOI:10.1038/s42004-022-00651-1
(2) M. Taher, B. Maity, T. Nakane, S. Abe, T. Ueno, and S. Mazumdar
Controlled Uptake of an Iridium Complex inside Engineered apo-Ferritin Nanocages: Study of Structure and Catalysis
Angew. Chem. Int. Ed., 61, e2021116623 (2022). DOI: 10.1002/anie.202116623
(1) 安部 聡, 上野隆史
トピックス タンパク質カゴ「フェリチン」に組み込んだ金属錯体による不斉反応の効率化
バイオサイエンスとインダストリー, 80, 478-479 (2022). DOI: 10.1002/anie.202116623


(10) Z.P. Li, B. Maity, Y. Hishikawa, T. Ueno, D. Lu
The Importance of Subunit-subunit Interface on Ferritin Disassembly: A Molecular Dynamics Study
Langmuir, 38, 1106–1113 (2022). DOI:10.1021/acs.langmuir.1c02753
(9) M. Kojima, S. Abe, T. Ueno
Engineering of protein crystals for use as solid biomaterials
Biomater. Sci., 10, 354-367 (2022). DOI:10.1039/D1BM01752G
(selected as a HOT Biomaterials Science article!!)
(8) K. Kikuchi, T. Fukuyama, T. Uchihashi, T. Furuta, Y. T. Maeda, T. Ueno
Protein Needles Designed to Self-assemble through Needle Tip Engineering
Small, 18, 2106401 (2022). DOI:10.1002/smll.202106401
(7) Q. D. Nguyen, K. Kikuchi, M. Kojima, and T. Ueno
Dynamic behavior of cargo proteins regulated by linker peptides on a protein needle scaffold
Chem. Lett., 51, 73-76 (2022). DOI:10.1246/cl.210599
(6) A. Ismail, K. Kerdpol, T. Rungrotmongkol, K. Tananuwong, T. Ueno, S. Ekasit, N. Muangsin and K. Krusong
Solubility enhancement of poorly water soluble domperidone by complexation with the large ring cyclodextrin
Int. J. Pharm., 606, 120909 (2021). DOI:10.1016/j.ijpharm.2021.120909
(5) S. Abe, T. T. Pham, H. Negishi, K. Yamashita, K. Hirata and T. Ueno
Design of an In-Cell Protein Crystal for the Environmentally Responsive Construction of a Supramolecular Filament
Angew. Chem. Int. Ed., 60, 12341-12345 (2021). DOI:10.1002/anie.202102039
(4) Q. D. Nguyen, K. Kikuchi, B. Maity and T. Ueno
The versatile manipulations of self-assembled proteins in vaccine design
Int. J. Mol. Sci., 22, 1934-1954 (2021) DOI:10.3390/ijms22041934
(3) T. K. Nguyen, S. Abe, M. Kasamatsu, B. Maity, K. Yamashita, K. Hirata, M. Kojima and T. Ueno
In-Cell Engineering of Protein Crystals with Nanoporous Structures for Promoting Cascade Reactions
ACS Appl. Nano. Mater., 4, 1672-1681 (2021) DOI:10.1021/acsanm.0c03129
(2) H. Tabe and T. Ueno
Construction of Multistep Catalytic Systems in Protein Assemblies
Cell-Inspired Materials and Engineering, Springer, ISBN: 978-3-030-55924-3.
(1) 上野隆史
現代化学, 601, 52-55, 4月号 (2021).



(5) B. Maity, Z.P. Li, K. Niwase, C. Ganser, T. Furuta†, T. Uchihashi, D. Lu and T. Ueno Single-molecule level dynamic observation of disassembly of the apo-ferritin cage in solution PCCP, 22, 18562-18572 (2020) DOI:10.1039/D0CP02069A
(4) Y. Hishikawa, B. Maity, N. Ito, S. Abe, D. Lu and T. Ueno Design of Multinuclear Gold Binding Site at the Two-fold Symmetric Interface of the Ferritin Cage Chem. Lett., 49, 840-844 (2020) DOI:10.1246/cl.200217
(3) S. Sato, M. Matsumura, T. Kadonosono, S. Abe, T. Ueno, H. Ueda, H. Nakamura Site-Selective Protein Chemical Modification of Exposed Tyrosine Residues Using Tyrosine Click Reaction Bioconjugate Chem., 31, 1417-1424 (2020) DOI:10.1021/acs.bioconjchem.0c00120
(2) T. Ueno, K. Niwase, D. Tsubokawa, K. Kikuchi, N. Takai, T. Furuta, R. Kawano, T. Uchihashi Dynamic behavior of an artificial protein needle contacting a membrane observed by high-speed atomic force microscopy Nanoscale, 12, 8166-8173 (2020) DOI:10.1039/D0NR01121E
(1) Y. Watanabe, Y. Aiba, S. Ariyasu, and S. Abe MolecularDesignandRegulationofMetalloenzymeActivitiesthroughTwoNovelApproaches:FerritinandP450s Bull. Chem. Soc. Japan, 93, 379-392 (2020) DOI:10.1246/bcsj.20190305


(5) S. Abe, N. Ito, B. Maity, C. L. Lu, D. N. Lu, and T. Ueno Coordination design of cadmium ions at the 4-fold axis channel of the apo-ferritin cage Dalton Trans., 48, 9759-9764 (2019). DOI:10.1039/C9DT00609E
(4) B. Maity, Y. Hishikawa, D.N. Lu, and T. Ueno Recent progresses in the accumulation of metal ions into the apo-ferritin cage: Experimental and theoretical perspectives Polyhedron, 172, 104-111 (2019). DOI:10.1016/j.poly.2019.03.048
(3) T. K. Nguyen, T. T. Pham, and T Ueno Engineering of protein crystals for development of bionanomaterials Jpn. J. Appl. Phys., 58, SI0802 (2019). DOI:10.7567/1347-4065/ab1399
(2) 安部 聡、上野隆史 タンパク質結晶を利用した分子・ナノ粒子触媒 光エネルギー変換における分子触媒の新展開(CSJカレントレビュー、化学同人)印刷中.
(1) 安部 聡、上野隆史 人工金属酵素による機能創成 機能性高分子金属錯体(錯体化学会フロンティア選書、三共出版)印刷中.


(8) T. Hashimoto, Y.X. Ye, A. Matsuno, Y. Ohnishi, A. Kitamura, M. Kinjo, S. Abe, T. Ueno, M. Yao, T. Ogawa, T. Matsui, Y. Tanaka Encapsulation of biomacromolecules by soaking and co-crystallization into porous protein crystals of hemocyanin BBRC, 509, 577-584 (2019). DOI:10.1016/j.bbrc.2018.12.096
(7) T. K. Nguyen, H. Negishi, S. Abe, and T. Ueno* Construction of Supramolecular Nanotubes from Protein Crystals Chem. Sci., 10, 1046-1051 (2019). DOI: 10.1039/C8SC04167A
(6) F. Hyodo,* T. Sho, B. Maity, K. Fujita, Y. Tachibana, S. Akashi, M. Mano, Y. Hishikawa, M. Matsuo, T. Nakaji, and T. Ueno* Photo-induced In Vivo MRI Imaging with Rapid CO Release from an MnCO-Protein Needle Composite Chem. Euro. J., 24, 11578-11583 (2018). DOI:10.1002/chem.201802445
(5) H. Mori, N. Oda, S. Abe, T. Ueno, W.L. Zhu, C. Pernstich, G. Pezzotti Raman spectroscopy insight into Norovirus encapsulation in Bombyx mori cypovirus cubic microcrystals Spectrochim. Acta A, 203, 19-30 (2018). DOI:10.1016/j.saa.2018.05.066
(4) H. Negishi, S. Abe, K. Yamashita, K. Hirata, K. Niwase, M. Boudes, F. Coulibaly, H. Mori, and T. Ueno Supramolecular protein cages constructed from a crystalline protein matrix Chem. Commun., 54, 1988-1991 (2018). DOI:10.1039/C7CC08689J
(3) H. Tabe, H. Takahashi, T. Shimoi, S. Abe, T. Ueno, Y. Yamada Photocatalytic hydrogen evolution systems constructed in cross-linked porous protein crystals Appl. Catal., B, 237, 1124-1129 (2018). DOI:10.1016/j.apcatb.2018.01.046
(2) B. Maity, S. Abe, T. Ueno* Tailoring Organometallic Complexes into Protein Scaffolds: Structures and Functions Advances in Bioorganometallic Chemistry, 329-346 (2019).
(1) 上野隆史 人工金属酵素の次世代設計 生命機能に迫る分子化学(CSJカレントレビュー30、化学同人)Ch12, 2018.


(8) T. K. Nguyen and T. Ueno Engineering of Protein Assemblies within Cells Curr. Opin. Struct. Biol., 51, 1-8 (2018). DOI:10.1016/
(7) S. Ryu, Y. Matsumoto, T. Matsumoto, T. Ueno, Y. R. Silberberg, and C. Nakamura Improved efficiency of nanoneedle insertion by modification with a cell-puncturing protein Jpn. J. Appl. Phys., 57, 03EB02 (2018).
(6) S. Abe, B. Maity, and T. Ueno Functionalization of protein crystals with metal ions,complexes and nanoparticles Curr. Opin. Chem. Biol., 43, 68-76 (2018). DOI:10.1016/j.cbpa.2017.11.015
(5) H. Inaba, and T. Ueno Artificial bio-nanomachines based on protein needles derived from bacteriophage T4 Biophys. Rev., 10, 641-658 (2018). DOI:10.1007/s12551-017-0336-9
(4) S. Abe, K. Atsumi, K. Yamashita, K. Hirata, H. Mori, and T. Ueno Structure of in cell protein crystals containing organometallic complexes PCCP, 20, 2986-2989 (2018). DOI:10.1039/C7CP06651A
(3) B. Maity, S. Abe, and T. Ueno Observation of gold sub-nanocluster nucleation within a crystalline protein cage Nat. Commun., 8,14820 (2017). DOI:10.1038/ncomms14820
(2) S. Abe, H. Tabe, H. Ijiri, K. Yamashita, K. Hirata, K. Atsumi, T. Shimoi, M. Akai, H. Mori, S. Kitagawa and T. Ueno Crystal Engineering of Self-Assembled Porous Protein Materials in Living Cells ACS Nano, 11, 2410-2419 (2017). DOI:10.1021/acsnano.6b06099
(1) 安部 聡、上野隆史 超分子タンパク質の分子設計によるバイオハイブリッド材料の開発 有機合成化学協会誌, 75, 1264-1273 (2017).


(5) B. Maity, and T. Ueno Design of Bioinorganic Materials At the Interface of Coordination and Biosupramolecular Chemistry Chem. Rec., 17, 383-398 (2017) (Selected as a Front Cover). DOI:10.1002/tcr.201600122
(4) B. Maity, K. Fukumori, S. Abe and T. Ueno Immobilization of two organometallic complexes into a single cage to construct protein-based microcompartment Chem. Commun., 52, 5463-5466 (2016). DOI:10.1039/C6CC00679E
(3) H. Tabe, T. Shimoi, M. Boudes, S. Abe, F. Coulibaly, S. Kitagawa, H. Mori, T. Ueno Photoactivatable CO Release from Engineered Protein Crystals to Modulate NF-κB Activation Chem. Commun., 52, 4545-4548 (2016). DOI:10.1039/C5CC10440H
(2) S. Abe, B. Maity, and T. Ueno Design of a Confined Environment using a Protein Cage and Crystals in Development of Biohybrid Materials Chem. Commun., 52, 6496-6512 (2016). (Selected as an Inside Front Cover) DOI:10.1039/C6CC01355D
(1) 安部 聡、上野隆史 金属錯体による細胞機能制御 フロンティア生物無機化学(錯体化学会フロンティア選書、三共出版)pp476-496 (2016).


(12) S. Abe, H. Ijiri, H. Negishi, H. Yamanaka, K. Sasaki, K. Hirata, H. Mori, and T. Ueno Design of Enzyme-Encapsulated Protein Containers by in Vivo Crystal Engineering Adv. Mater., 27, 7951-7956 (2015). DOI:10.1002/adma.201503827 (Featured on Kagaku Kogyo Nippo (Oct. 26, 2015), Nikkan Kogyo shinbun (Oct. 27, 2015), and Kyoto Shinbun (Nov. 03, 2015))
(11) H. Nakajima, M. Kondo, T. Nakane, S. Abe, T. Nakao, Y. Watanabe and T. Ueno Construction of an enterobactin analogue with symmetrically arranged monomer subunits of ferritin Chem. Commun., 51, 16609-16612(2015). (Selected as an Inside Front Cover) DOI:10.1039/C5CC06904A
(10) H. Inaba, N.J.M. Sanghamitra, K. Fujita, T. Sho, T. Kuchimaru, S. Kitagawa, S. Kizaka-Kondohc, and T. Ueno A metal carbonyl-protein needle composite designed for intracellular CO delivery to modulate NF-κB activity Mol. BioSyst., 11, 3111-3118 (2015). DOI: 10.1039/C5MB00327J
(9) K. Fujita, Y. Tanaka, S. Abe and T. Ueno A Photoactive CO Releasing Protein Cage for Dose-Regulated Delivery in Living Cells Angew. Chem. Int. Ed., 55, 1056-1060 (2016). (selected as a Hot Paper). DOI: 10.1002/anie.201506738. (Featured on Kagaku Kogyo Nippo (Sep. 11, 2015), PHYS.ORG, and
(8) H. Inaba, K. Fujita and T. Ueno Design of Biomaterials for intracellular delivery of carbon monoxide Biomaterials Science, 3, 1423-1438 (2015). DOI: 10.1039/C5BM00210A
(7) S. Abe and T. Ueno Design of Protein Crystals in the Development of Solid Biomaterials RSC Advances, 5, 21366-21375 (2015).DOI: 10.1039/C4RA16748A
(6) T. Ueno (Guest Editor) Special Issue: Artificial Metalloenzymes Isr. J. Chem., 55. (2015). DOI: 10.1002/ijch.201410018 (Highlighted in Wiley-Japan Science caffe)
(5) 稲葉央、安部聡、上野隆史 「超分子タンパク質を用いて金属の反応を操る」 化学, 70, 41-46 (2015).
(4) 藤田健太、上野隆史 「細胞への一酸化炭素ガス分子放出を指向した蛋白質集合体の機能化」 酵素工学ニュース, 73, 14-16 (2015).
(3) 稲葉央、上野隆史 「タンパク質分子針の動的機能と細胞制御」 生物物理, 55, 89-91 (2015).
(2) 安部聡、上野隆史 「タンパク質結晶の分子設計によるバイオ固体材料の開発」 化学工業, 66, 264-272 (2015).
(1) 藤田健太、上野隆史 展望「X線結晶構造解析が解き明かすーカゴタンパク質のガス放出」 日本アイソトープ協会“ISOTOPE NEWS”, 64, 2-6 (2015).


(9) B. Maity, K. Fujita and T. Ueno Use of the Confined Spaces of Apo-Ferritin and Virus Capsids as Nanoreactors for Catalytic Reactions Curr. Opin. Chem. Biol., 25, 88-97 (2015). DOI: 10.1016/j.cbpa.2014.12.026
(8) H. Tabe, T. Shimoi, K. Fujita, S. Abe, H. Ijiri, M. Tsujimoto, T. Kuchimaru, S. Kizaka-Kondo, H. Mori, S. Kitagawa and T. Ueno Design of a CO-releasing Extracellular Scaffold using in-vivo Protein Crystals Chem. Lett., 44, 342-344 (2015). DOI: org/10.1246/cl.141035
(7) H. Tabe, K. Fujita, S. Abe, M. Tsujimoto, T. Kuchimaru, S. Kizaka-Kondoh, M. Takano, S. Kitagawa, and T. Ueno Preparation of a Cross-linked Porous Protein Crystal containing Ru carbonyl complexes as a CO-releasing Extracellular Scaffold Inorg. Chem., 54, 215-220 (2015). DOI: 10.1021/ic502159x
(6) K. Fujita, Y. Tanaka, T. Sho, S. Ozeki, S. Abe, T. Hikage, T. Kuchimaru, S. Kizaka-Kondoh, and T. Ueno Intracellular CO Release from Composite of Ferritin and Ruthenium Carbonyl Complexes J. Am. Chem. Soc., 136, 16902-16908 (2014). DOI: 10.1021/ja508938f. (Featured on The Nikkei-sangyo (Nov. 21, 2014), Zaikei shinbun (Nov. 24, 2014), Nikkan Kogyo shinbun (Nov. 25, 2014), PHYS.ORG,, and nanowerk.)
(5) S. Abe, Y. Tokura, R. Pal, N. Komura, A. Imamura, K. Matsumoto, H. Ijiri, N. J. M. Sanghamitra, H. Tabe, H. Ando, M. Kiso, H. Mori, S. Kitagawa, and T. Ueno Surface Functionalization of Protein Crystals with Carbohydrate Using Site-selective Bioconjugation Chem. Lett., 44, 29-31 (2015). DOI: 10.1246/cl.140865
(4) N. J. M. Sanghamitra, H. Inaba, F. Arisaka, D. -O. Wang, S. Kanamaru, S. Kitagawa, and T. Ueno Plasma membrane translocation of a protein needle based on a triple-stranded β-helix motif Mol. BioSyst., 10, 2677-2683 (2014). DOI: 10.1039/C4MB00293H
(3) H. Inaba, S. Kitagawa, and T. Ueno Protein needles as molecular templates for artificial metalloenzymes Isr. J. Chem., 55, 40-50 (2015). DOI: 10.1002/ijch.201400097.
(2) H. Inaba, N. J. M. Sanghamitra, T. Fukai, T. Matsumoto, K. Nishijo, S. Kanamaru, F. Arisaka, S. Kitagawa, and T. Ueno Intracellular Protein Delivery System with Protein Needle-GFP Construct (Selected for virtual collection of “Drug Delivery”) Chem. Lett., 43, 1505-1507 (2014). DOI:10.1246/cl.140481 (Selected for virtual collection of “Drug Delivery“)
(1) H. Tabe, S. Abe, T. Hikage, S. Kitagawa and T. Ueno Porous Protein Crystals as Catalytic Vessels for Organometallic Complexes Chem. Asian J., 9,1373-1378 (2014). (Selected as a Cover Picture) DOI: 10.1002/asia.201301347


(11) T. Ueno Porous Protein Crystals as Reaction Vessels Chem. Euro. J., 19, 9096-9102 (2013). (Selected as a Concept article) DOI: 10.1002/chem.201300250
(10) T. Ueno, H. Tabe, and Y. Tanaka Artificial Metalloenzymes Constructed From Hierarchically-Assembled Proteins Chem. Asian J., 8, 1646-1660 (2013). DOI: 10.1002/asia.201300347 (Highlighted in Wiley-Japan Science Caffe)
(9) Nusrat J. M. Sanghamitra and T. Ueno Expanding coordination chemistry from protein to protein assembly Chem. Commun., 49, 4114-4126 (2013). (Selected as a feature article in the ‘Emerging Investigators 2013 issue) DOI: 10.1039/C2CC36935D
(8) Nusrat J M Sanghamitra, H. Inaba, S. Kitagawa, and T. Ueno Inorganic Design of Protein Assemblies as Supramolecular Platforms J. Inorg. Org. Polym., 23, 50-60 (2013). DOI: 10.1007/s10904-012-9728-2
(7) T. Ueno Chapter 7. Coordination Chemistry in Self-assembly Proteins Metal-Molecular Assembly for Functional Materials (SpringerBriefs in Molecular Science), Yutaka Matsuo, Ed, Springer, ISBN: 978-4431543695.
(6) S. Abe, and T. Ueno Chapter 7. Catalytic Reactions Promoted in Protein Assembly Cages Coordination Chemistry in Protein Cages-Principles, Design and Applications, Wiley, ISBN: 978-1-118-07857-0.
(5) Ueno, and Y. Watanabe, Eds. Coordination Chemistry in Protein Cages-Principles, Design and Applications, Wiley, ISBN: 978-1-118-07857-0.
(4) S Abe, and T. Ueno Coordination of Organometallic Palladium Complexes in Apoferritin Encyclopedia of Metalloproteins, Springer, ISBN 978-1-4614-1532-9.
(3) 上野隆史 「人工金属酵素」 Bull. Jpn. Soc. Coord. Chem., 62, 44-47 (2013).
(2) 上野隆史 「人工金属酵素」 高分子, 63, 172-173 (2013).
(1) 安部聡、上野隆史 「化学反応観察を目指したタンパク質結晶の分子設計」 日本結晶学会誌, 55, 81-85, 2013.


(5) Z.-F. Ke, S. Abe, T. Ueno, and K. Morokuma Catalytic Mechanism in Artificial Metalloenzyme: QM/MM Study of Phenylacetylene Polymerization by Rhodium Complex Encapsulated in apo-Ferritin J. Am. Chem. Soc., 134, 15418-15429 (2012). DOI: 10.1021/ja305453w
(4) H. Inaba , S. Kanamaru , F. Arisaka , S. Kitagawa and T. Ueno Semi-synthesis of an artificial scandium(III) enzyme with a β-helical bio-nanotube Dalton Trans., 41, 11424-11427 (2012). DOI: 10.1039/c2dt31030a
(3) J.-K. Xu , O. Shoji , T. Fujishiro , T. Ohki , T. Ueno and Y. Watanabe Construction of biocatalysts using the myoglobin scaffold for the synthesis of indigo from indole Cat. Sci. Technol., 2, 739-744 (2012). DOI: 10.1039/c2cy00427e
(2)  S. Abe, M. Tsujimoto, K. Yoneda, M. Ohba, T. Hikage, M. Takano, S. Kitagawa and T. Ueno Porous Lysozyme Crystals as Reaction Vessels for Preparation of Magnetic CoPt Nanoparticles Small, 8, 1314-1319 (2012). DOI: 10.1002/smll.201101866
(1) Nusrat J.M. Sanghamitra and T. Ueno Chapter 10. Biocatalysis and Enzyme Stability in Ionic Liquids Green Solvents II, Properties and Applications in Chemistry, Springer, Ali Mohammad, Dr. Inamuddin Eds, 2012.


(6) Z.-F. Ke, S. Abe, T. Ueno, and K. Morokuma Rh-catalyzed Polymerization of Phenylacetylene: Theoretical Studies of the Reaction Mechanism, Regioselectivity and Stereoregularity J. Am. Chem. Soc., 133, 7926-7941 (2011). DOI: 10.1021/ja2012565
(5) T. Koshiyama, M. Shirai, T. Hikage, H. Tabe, K. Tanaka, S. Kitagawa and T. Ueno Post-Crystal Engineering of Zinc-Substituted Myoglobin to Construct a Long-lived Photo-induced Charge Separation System Angew. Chem. Int. Ed., 50, 4849-4852 (2011). DOI: 10.1002/anie.201008004
(4) Y. Takezawa, P. Böckmann, N. Sugi, Z. Wang, S. Abe, T. Murakami, T. Hikage, G. Erker, Y. Watanabe, S. Kitagawa and T. Ueno Incorporation of Organometallic Ru Complexes into Apo-Ferritin Cage Dalton. Trans., 40, 2190-2196 (2011) (Selected in the ‘New Talent: Asia’ issue and hot paper). DOI: 10.1039/c0dt00955e
(3) N. Yokoi, Y. Miura, C.-Y. Huang, N. Takatani, H. Inaba, T. Koshiyama, S. Kanamaru, F. Arisaka, Y. Watanabe, S. Kitagawa, and T. Ueno Dual modification of a triple-stranded b-helix nanotube with Ru and Re metal complexes to promote photocatalytic reduction of CO2 Chem. Commun., 47, 2074-2076 (2011). DOI: 10.1039/c0cc03015e
(2) Wang,Y. Takezawa,H. Aoyagi,S. Abe,T. Hikage, Y. Watanabe,S. Kitagawa,and T. Ueno Definite Coordination Arrangement of Organometallic Palladium Complexes Accumulated on the Designed Interior Surface of Apo-ferritin Chem. Commun., 47, 170-172 (2011) (Selected in the ‘Emerging Investigators’ issue and as a back cover). DOI: 10.1039/c0cc02221g
(1) 上野隆史 トピックス「金属錯体反応場としてのタンパク質結晶設計」 「高分子」60, 6月号, 399-400 (2011)



(7) N. Yokoi, H. Inaba, M. Terauchi, A. Z. Stieg, N. J. M. Sanghamitra, T. Koshiyama, K. Yutani, S. Kanamaru, F. Arisaka, T. Hikage, A. Suzuki, T. Yamane, J. K. Gimzewski, Y. Watanabe, S. Kitagawa and T. Ueno Construction of Robust Bio-nanotube by Controlled Self-assembly of Component Proteins of Bacteriophege T4 Small, 6, 1873-1879 (2010) (selected as an inside cover picture). DOI: 10.1002/smll.201000772
(6) S. Abe, T. Hikage, Y. Watanabe, S. Kitagawa, and T. Ueno Mechanism of Accumulation and Incorporation of Organometallic Pd Complexes into the Protein Nanocage of apo-Ferritin Inorg. Chem., 49, 6967-6973 (2010). DOI: 10.1021/ic1003758
(5) T. Ueno, S. Abe, T. Koshiyama, T. Ohki, T. Hikage, and Y. Watanabe Metal Ion Accumulation Induced by Hydrogen Bonds on Protein Surfaces: Mechanistic Insights into the Initiation Steps of Biomineralization Obtained using Porous Lysozyme Crystals Containing Rh(III) Ions Chem. Eur. J., 16, 2730-2740 (2010) (Highlight paper). DOI: 10.1002/chem.200903269
(4) T. Koshiyama, N. Kawaba, T. Hikage, M. Shirai, Y. Miura, C.-Y. Huang, K. Tanaka, Y. Watanabe, and T. Ueno Modification of Porous Protein Crystals in Development of Bio-hybrid Materials Bioconjugate Chem., 21, 264-269 (2010). DOI: 10.1021/bc9003052
(3) T. Ueno An Engineered Metalloprotein as a Functional and Structural Bioinorganic Model System Angew. Chem. Int. Ed., 49, 3868-3869 (2010). DOI: 10.1002/anie.201000337
(2) 上野隆史 配位化学による蛋白質集合体の機能設計 金属と分子集合 監修 松尾 豊(シーエムシー出版)pp 5-23 (2010).
(1) 上野隆史 巨大蛋白質を舞台とする触媒化学 現代化学 2月号(東京化学同人)No. 467, pp 54-59 (2010).


(8) S. Abe, K. Hirata, T. Ueno, K. Morino, N. Shimizu, M. Yamamoto, M. Takata, E. Yashima, and Y. Watanabe Polymerization of Phenylacetylene by Rhodium Complexes within a Discrete Space of apo-Ferritin J. Am. Chem. Soc., 131, 6958-6960 (2009) (Highlighted on Nature Chemistry) DOI: 10.1021/ja901234j
(7) T. Ueno,* M. Abe, K. Hirata, S. Abe, M. Suzuki, N. Shimizu, M. Yamamoto, M. Takata, Y. Watanabe Process of Accumulation of Metal Ions on the Interior Surface of apo-Ferritin: Crystal Structures of a Series of apo-Ferritins Containing Variable Quantities of Pd(II) Ions J. Am. Chem. Soc., 131, 5094-5100 (2009) (日経産業新聞 他四誌掲載). DOI: 10.1021/ja806688s
(6) M. Suzuki, M. Abe, T. Ueno, S. Abe, T. Goto, Y. Toda, T. Akita, Y. Yamada, Y. Watanabe Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in Apo-Ferritin Chem. Commun., 4871-4873 (2009). DOI: 10.1039/B908742G
(5) T. Koshiyama, T. Ueno, S. Kanamaru, F. Arisaka, and Y. Watanabe Construction of an Energy Transfer System in the Bio-nanocup Space by Heteromeric Assembly of gp27 and gp5 Proteins Isolated From Bacteriophage T4 Org. Biomol. Chem., 7, 2649-2654 (2009). DOI: 10.1039/B904297K
(4) S. Abe, T. Ueno, and Y. Watanabe Artificial Metalloproteins Exploting Vacant Space: Preparation Structures, and Functions Top. Organomet. Chem., 25, pp 25-44 (2009).
(3) 渡辺芳人、安部 聡、上野隆史 蛋白質が提供するナノ空間 ナノ空間材料の創成と応用 有賀克彦 編集(フロンティア出版)pp 72-79 (2009)
(2) 安部 聡、上野隆史 超分子タンパク質内部空間の金属イオン集積 超分子金属錯体(錯体化学会選書、三共出版)pp 176-188 (2009)
(1) 渡辺芳人、上野隆史 蛋白質空間錯体Hybridy 配位空間の化学 北川 進 監修(シーエムシー出版)pp 301-311 (2009)


(8) J. Niemeyer, S. Abe, T. Hikage, T. Ueno*, G. Erker and Y. Watanabe Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin Chem. Commun., 6519-6521(2008). DOI: 10.1039/B813181C
(7) S. Abe, J. Niemeyer, M. Abe, Y. Takezawa, T. Ueno,* T. Hikage, G. Erker, and Y. Watanabe Control of the Coordination Structure of Organometallic Palladium Complexes in an apo-Ferritin Cage J. Am. Chem. Soc., 130, 10512-10514 (2008). DOI: 10.1021/ja802463a
(6) T. Koshiyama, N. Yokoi, T. Ueno,* S. Kanamaru, S. Nagano, Y. Shiro, F. Arisaka and Y. Watanabe Molecular design of hetero protein assemblies providing a bio-nanocup as a chemical reactor Small, 4, 50-54 (2008) (Highlighted in Material views) DOI: 10.1002/smll.200700855
(5) N. Yokoi, T. Ueno, M. Unno, T. Matsui, M. Ikeda-Saito and Y. Watanabe Ligand design for the improvement of stability of metal complex•protein hybrid Chem. Commun., 229-231(2008). DOI: 10.1039/B713468A
(4) T. Ueno Functionalization of viral protein assemblies by self-assembly reactions J. Mater. Chem., 18, 3741-3745(2008). DOI: 10.1039/B806296J
(3) T. Ueno Design of Protein Scaffolds for Chemical Reactions Catalyzed by Metal Complexes and Nanoparticles Bull. Jpn. Soc. Coord. Chem., 51, 20-30 (2008) (Award account, Japanese)
(2) 越山友美、上野隆史 架橋化蛋白質結晶の不均一触媒への展開 蛋白質結晶の新展開 高野和文 監修(シーエムシー出版)pp 276-288 (2008)
(1) 安部聡、上野隆史 ナノ構造蛋白質の内部空間利用 バイオナノプロセス 山下一郎 監修 (シーエムシー出版)pp 62-69 (2008)


(7) Y. Satake, S. Abe, S. Okazaki, N. Ban, T. Hikage, T. Ueno, H. Nakajima, A. Suzuki, T. Yamane, H. Nishiyama, and Y. Watanabe Incorporation of Phebox Rhodium Complex into apo-Myoglobin Affords Stable Organometallic Protein Showing Unprecedented Arrangement of the Complex in the Cavity Organometallics, 26, 4904 – 4908 (2007). DOI: 10.1021/om700471a
(6) S. Abe, T. Ueno, P. Reddy, S. Okazaki, T. Hikage, A. Suzuki, T. Yamane, H. Nakajima, and Y. Watanabe Design and Structure Analysis of Artificial Metalloproteins: Selective Coordination of His64 to Copper Complexes with Square-Planar Structure in the Apo-Myoglobin Scaffold Inorg. Chem., 46, 5137 – 5139 (2007). (selected as a cover picture) DOI: 10.1021/ic070289m
(5) T. Ueno*, T. Koshiyama, S. Abe, N. Yokoi, M. Ohashi, and H. Nakajima, and Y. Watanabe Design of Artificial Metalloenzymes using Non-covalent Insertion of a Metal Complex into a Protein Scaffold J. Organometal. Chem., 692, 142-147 (2007). DOI: 10.1016/j.jorganchem.2006.08.043
(4) T. Ueno, N. Yokoi, S. Abe, and Y. Watanabe Crystal Structure Based Design of Functional Metal/Protein Hybrids J. Inorg. Biochem., 101, 1667-1675(2007). DOI: 10.1016/j.jinorgbio.2007.06.025
(3) T. Ueno, S. Abe, N. Yokoi, and Y. Watanabe Coordination Design of Artificial Metalloproteins Utilizing Protein Vacant Space Coord. Chem. Rev., 251, 2717-2731(2007). DOI: 10.1016/j.ccr.2007.04.007
(2) Y. Watanabe,* H. Nakajima, and T. Ueno Reactivities of Oxo and Peroxo Intermediates Studied by Hemoprotein Mutants Acc. Chem. Res., 40, 554-562 (2007). DOI: 10.1021/ar600046a
(1) 上野隆史 注目の論文「触媒コピーを細胞内で!?」 月刊「化学」化学同人 12月号 (2007)


(3) T. Ueno*, T. Koshiyama, T. Tsuruga, T. Goto, S. Kanamaru, F. Arisaka and Y. Watanabe Bio-nanotube tetrapod assembly by in situ synthesis of Au nanocluster with (gp5-His6)3 from bacteriophage T4 Angew. Chem. Int. Ed., 45, 4508-4512 (2006).€€  DOI: 10.1002/anie.200504588
(2) T. Ueno, N. Yokoi, M. Unno, T. Matsui, Y. Tokita, M. Yamada, M. Ikeda- Saito, H. Nakajima, and Y Watanabe Design of Metal Cofactors Activated by Protein-Protein Electron Transfer System Pro. Natl. Acad. Sci. USA., 103, 9416-9421 (2006). DOI: 10.1073/pnas.0510968103
(1) 渡辺芳人、上野隆史 金属酵素の設計に挑む 化学フロンティア16 チャンピオンレコードをもつ金属錯体最前線 pp 72-81 (2006)


(3) T. Ueno, T. Koshiyama, M. Ohashi, K. Kondo, M. Kono, A. Suzuki, T. Yamane, and Y. Watanabe Coordinated Design of Cofactor and Active Site Structures in Development of New Protein Catalysts J. Am. Chem. Soc., 127, 6556-6562 (2005). DOI: 10.1021/ja045995q
(2) A. Chatterji, W. F. Ochoa, T. Ueno, T. Lin, and J. E. Johnson A Virus-Based Nanoblock with Tunable Electrostatic Properties Nano Lett., 5, 597-602 (2005). DOI: 10.1021/nl048007s
(1) T. D. Pfister, T. Ohki, T. Ueno, I. Hara, S. Adachi, Y. Makino, N. Ueyama, Y. Lu, and Y. Watanabe Mutant and Hydrogen Peroxide Myoglobin Mutants as a Model for P450 Hydroxylation Chemistry J. Biol. Chem., 280. 12858-12866 (2005). DOI: 10.1074/jbc.M410853200


(7) S. Kato, T. Ueno, S. Fukuzumi, and Y. Watanabe Catalase Reaction by Myoglobin Mutants and Native Catalase – Mechanistic Investigation by Kinetic Isotope Effect J. Biol. Chem., 279, 52376-52381 (2004). DOI: 10.1074/jbc.M403532200
(6) T. Ueno, M. Ohashi, M. Kono, K. Kondo, A. Suzuki, T. Yamane, and Y. Watanabe Crystal Structures of Artificial Metalloproteins: Tight Binding of FeIII(Schiff Base) by Mutation of Ala71 to Gly in Apo-Myoglobin Inorg. Chem., 43, 2852-2858 (2004).€€ DOI: 10.1021/ic0498539
(5) T. Ueno,* M. Suzuki, T. Goto, T. Matsumoto, K. Nagayama, and Y. Watanabe Size Selective Olefin Hydrogenation by a Pd Nanocluster Provided in the Apo-Ferritin Cage Angew. Chem. Int. Ed., 43, 2527-2530 (2004) DOI: 10.1002/anie.200353436
(4) M. Kamiya, Y. Kumaki, K. Nitta, T. Ueno, Y. Watanabe, K. Yamada, T. Matsumoto, K. Hikichi, and N. Matsushima Copper Binding to Plant Ozone-Inducible Proteins (OI2-2 and OI14-3) Biochem. Biophys. Res. Commun., 314, 908-915 (2004). DOI: 10.1016/j.bbrc.2003.12.158
(3) H. Sato, T. Hayashi,* T. Ando, Y. Hisaeda,* T. Ueno, and Y. Watanabe Hybridization of Modified-Heme Reconstitution and Distal Histidine Mutation to Functionalize Sperm Whale Myoglobin J. Am. Chem. Soc., 126, 436-437 (2004). DOI: 10.1021/ja038798k
(2) T. Ueno, T. Ohki, and Y. Watanabe Molecular Engineering of Cytochrome P450 and Myoglobin for Selective Oxygenations J. Porphyrins Phthalocyanines, 8, 279-289 (2004). DOI: 10.1142/S108842460400026X
(1) 上野隆史、渡辺芳人 最新のトピック「化学システム基盤としてのタンパク質複合体—ウイルスは化学反応の土台となりうるかー」 月刊「化学」59, 70-71, (2004)


(3) H. -J Yang, T. Matsui, S. Ozaki, S. Kato, T. Ueno, G. N. Phillips, Jr., S. Fukuzumi, and Y. Watanabe Molecular Engineering of Myoglobin: Influence of Residue-68 on the Rate and the Enantioselectivity of Oxidation Reactions Catalyzed by H64D/V68X Mb Biochemistry, 42, 10174-10181 (2003). DOI: 10.1021/bi034605u
(2) M. Ohashi, T. Koshiyama, T. Ueno, M. Yanase, H. Fujii, and Y. Watanabe Preparation of Artificial Metalloenzymes by Insertion of Chromium(III) Schiff Base Complexes into Apo-Myoglobin Mutants Angew. Chem. Int. Ed., 42, 1005-1008 (2003). DOI: 10.1002/anie.200390256
(1) Y. Watanabe* and T. Ueno Introduction of P450, Peroxidase, and Catalase Activities into Myoglobin by Site-Directed Mutagenesis: Diverse Reactivities of Compound I Bull. Chem. Soc. Jpn., 76, 1309-1322 (2003). DOI: 10.1246/bcsj.76.1309


(1) S. Kato, H. -J. Yang, T. Ueno, S. Ozaki, G. N. Phillips, Jr., S. Fukuzumi, and Y. Watanabe Asymmetric Sulfoxidation and Amine Binding by H64D/V68A and H64D/V68S Mb: Mechanistic Insight into the Chiral Discrimination Step J. Am. Chem. Soc., 124, 8506-8507 (2002). DOI: 10.1021/ja0256414


(1) I. Hara, T. Ueno, S. Ozaki, S. Itoh, K. Lee, N. Ueyama, and Y. Watanabe Oxidative Modification of Tryptophan 43 in the Heme Vicinity of the F43H/H64L Myoglobin Mutant J. Biol. Chem., 276, 36067-36070 (2001) DOI: 10.1074/jbc.C100371200


(9) N. Ueyama, M. Inohara, A. Onoda, T. Ueno, T. Okamura, and A. Nakamura Protection of Proton-Initiated Ligand Dissociation from Hg(II) Complexes with Bulky Cholyl Anilide Arenethiolate by NH—S Hydrogen Bonding in an Aqueous Micellar Solution Inorg. Chem., 38, 4028-4031 (1999). DOI: 10.1021/ic9811042
(8) T. Ueno, N. Nishikawa, S. Moriyama, S. Adachi, K. Lee, T. Okamura, N. Ueyama, and A. Nakamura Role of the Invariant Peptide Fragment Forming NH—S Hydrogen Bonds in the Active Site of Cytochrome P-450 and Chloroperoxidase: Synthesis and Properties of Cys-Containing Peptide Fe(III) and Ga(III) (Octaethylporphinato) Complexes as Models Inorg. Chem., 38, 1199-1210 (1999). DOI: 10.1021/ic980710u
(7) T. Ueno, Y. Kousumi, K. Yoshizawa-Kumagaye, K. Nakajima, N. Ueyama, and T. Okamura and A. Nakamura Role of Alpha-Helix Conformation Cooperating with NH—S Hydrogen Bond in the Active Site of Cytochrome P-450 and Chloroperoxidase: Synthesis and Properties of [MIII(OEP)(Cys-Helical Peptide)] (M = Fe and Ga) J. Am. Chem. Soc., 120, 12264-12273 (1998). DOI: 10.1021/ja980016d
(6) H. Zaima, T. Unryuu, Y. Kousumi, T. Ueno, T. Okamura, N. Ueyama, and A. Nakamura Regulation of Electrochemical Properties of Fe(II) and Fe(III) Thiolate Complexes by Hydrogen Bonding with Diamide Additive React. Funct. Polym., 37, 225-233 (1998). DOI: 10.1016/S1381-5148(97)00172-7
(5) N. Ueyama, M. Inohara, T. Ueno, T. Okamura, and A. Nakamura Stabilization of [4Fe-4S] Ferredoxin Model Complex by a Combination of Hydrophobic Cholyl Group and the Specific NH—S Hydrogen Bond in Aqueous Micellar Solution Polym. J., 29, 949-951 (1997) DOI: 10.1295/polymj.29.949
(4) T. Ueno, M. Inohara M, Ueyama N, and A. Nakamura Cooperative Redox Regulation of [4Fe-4S] Ferredoxin Model Arenethiolate Complexes by NH—S Hydrogen Bonds and an Aromatic C-H—S Interaction Bull. Chem. Soc. Jpn., 70, 1077-1083 (1997) DOI: 10.1246/bcsj.70.1077
(3) T. Ueno, N. Ueyama, A. Nakamura Redox Behaviour of 4Fe-4S Ferredoxin Model Arenethiolate Complexes Involving Specific NH—S Hydrogen Bonds Assisted by a Neighbouring Phenyl Group J. Chem. Soc. Dalton, 3859-3863 (1996) DOI: 10.1039/DT9960003859
(2) W. -Y. Sun, T. Ueno, N. Ueyama, and A. Nakamura F-19 NMR Investigations of Cobalt(II) Complexes with Cysteine-containing Peptide Ligands Magn. Reson. Chem., 33, 174-177 (1995) DOI: 10.1002/mrc.1260330304
(1) 上野隆史、小安幸夫 解説「固体触媒開発におけるCombinatorial Chemistryの適用可能性」 触媒, 42, 268-271, (2000)